ak Park Elementary School District 97

Grade 5 | Module 1 | Topic F | Dividing Decimals

Welcome

This document is created to give parents and students a better understanding of the math concepts found in the Eureka Math (© 2013 Common Core, Inc.) that is also posted in the Engage New York material taught in the classroom. Grade 5 Module 1 of Eureka Math (Engage New York) covers place value and decimal fractions. Topic F concludes Module 1 with an exploration of division of decimal numbers by one-digit whole number divisions using place value charts and unit form.

Words to Know

* Thousandths/Hundredths/ Tenths
* Tape Diagram
* Quotient: Answer to a division problem
* Dividend (whole): A quantity the be separated into the number of equal groups or into the amount in each group
* Divisor: Tells the size of the
group

Objectives of Topic \mathbf{F}

- Divide decimals by single-digit whole numbers involving easily identifiable multiples using place value understanding are relate to a written method.
- Divide decimals with a remainder using place value understanding and relate to a written method.
- Divide decimals using place value understanding including remainders in the smallest units.
- Solve word problems using decimal operations.

Example Problems

Dividing Decimals on the Place Value Chart
When dividing decimals students will use a place value chart to assist them.

Problem: $6.72 \div 3$
Step 1: Draw a place value chart and separate the bottom part into 3 groups since we are taking the whole (6.72) and dividing it into 3 equal parts.

Step 2: Show 6.72 in the place value chart.

Step 3: Begin with the larger units which in this problem is the ones place. We can share 6 ones equally with three groups. There will be 2 ones in each group.
Now we will move to the tenths. We can share 7 tenths with 3 groups by giving each group 2 tenths and then there will be one tenth left. The 1 tenth will be renamed as 10 hundredths. Now there are a total of 12 hundredths which can be shared with 3 groups by giving each group 4 hundredths.

Decimals can also be divided by breaking apart the dividend into unit form. Both of these parts can be divided by the divisor and then added together to find the quotient.
$12.62 \div 2$
$=(12$ ones $\div 2)+(64$ hundredths $\div 2)$
$=6$ ones +32 hundredths

$$
=6.32
$$

Application Problems and Answers

Problem: 12.48 milliliters of medicine were separated into doses of 4 ml each. How many doses were made?

$$
\begin{aligned}
& =12.48 \div 4 \\
& =(12 \text { ones } \div 4)+(48 \text { hundredths } \div 4) \\
& =3 \text { ones }+12 \text { hundredths } \\
& =3.12 \text { doses }
\end{aligned}
$$

3.12 doses can be made.

Application Problems and Answers (cont.)

Problem: Grayson wrote the following in her math journal:
$1.47 \div 7=2.1$
Use words, numbers, and pictures to explain why Grayson's thinking is incorrect.
$1.47 \div 7$ cannot equal 2.1 because 2.1 is greater than 1.47, which is the number that is being divided into 7 parts; therefore the answer has to be smaller than 1.47.

$$
\begin{aligned}
& \quad 1.47 \div 7 \\
& =(14 \text { tenths } \div 7)+(7 \text { hundredths } \div 7) \\
& =2 \text { tenths }+1 \text { hundredth } \\
& =0.21
\end{aligned}
$$

Grayson rewrote 1.47 as 14 ones and 7 tenths instead of 14 tenths and 7 hundredths.

Problem: Mrs. Henderson makes punch by mixing 10.9 liters of apple juice, 600 milliliters of orange juice, and 8 liters on ginger ale. She pours the mixture equally into 6 large punch bowls. How much punch is in each bowl? Express your answer in liters.
10.9 liters
8.0 liters
0.600 liters (1 liter $=1,000$ milliliters)
19.500 liters of mixture

3.250	
619.500	
-18	
15	In each punch
-12	bowl, there are
30	3.250 or 3.25 liters
30	of the mixture.
00	
00	

Application Problems and Answers (cont.)

The price of most milk in 2013 was around $\$ 3.28$. This is eight times as much as you would have probably paid for a gallon of milk in the 1950's. What was the cost for a gallon of milk during the 1950's?

Use the tape diagram to show your calculations. (A tape diagram is a drawing that looks like a segment of tape, used to illustrate number relationships.)

2013

3.28

The segment is divided into 8 equal parts since the cost of a gallon of milk in 2013 was 8 times as much as in 1950.

1950 - The cost of a gallon of milk in 1950 is one of the 8 parts.

$$
3.28 \div 8
$$

$=(32$ tenths $\div 8)+(8$ hundredths $\div 8)$
$=4$ tenths +1 hundredth
$=0.41$
Milk costs $\$ 0.41$ a gallon in the 1950's.

Homework Help

Looking for assistance for to help complete nightly homework? Check out the following website to get digital copies of homework, as well as detailed explanations in video format:
http://www.oakdale.k12.ca.us/cms/page_view? $\underline{d=x \& p i i d=\& v p i d=1401784829350}$

Don't forget to check out www.zearn.com for extra practice as well!

Online Resources

Flipped learning is a great way to review topics that your student is learning in the classroom. The following are links to videos that give detailed explanations for each lesson in this topic.

Lesson 15: https:// www.youtube.com/watch? v=HSkL6rj9Z7Q

Lesson 16: https:// www.youtube.com/watch? $\mathrm{v}=\mathrm{qEHchlOuBCl}$

Grade 5	manas
Module 1	engage ${ }^{\text {ny }}$
Lesson 16	- 10:37

