

Grade 5 | Module $2 \mid$ Topic A| Mental Strategies for Multiplication

Welcome

This document is created to give parents and students a better understanding of the math concepts found in the Eureka Math (© 2013
Common Core, Inc.) that is also posted in the Engage New York material taught in the classroom. Grade 5 Module 2 of Eureka Math (Engage New York) MultiDigit Whole Number and Decimal Fraction Operations. This newsletter will discuss Module 2, Topic A.

Objectives

- Multiply multi-digit whole numbers and multiplies of 10 using place value patterns and the distributive and associative properties
- Estimate multi-digit products by rounding factors to a basic fact and using place value patterns

Online Practice

Check out www.zearn.com for extra practice as well!

Important Information

Words to Know:

- Product	- Estimate
- Associative Property	- Factor
- Commutative Property	- Equation
- Distributive Property	

Things to Remember:

- Commutative Property: The word "commutative" comes from "commute" or "move around," so the Commutative Property is one that refers to moving stuff around. Example: $2 \times 3=3 \times 2$
- Associative Property: The word "associative" comes from "associate" or "group." The Associative Property is the rule that refers to grouping. Example: $5 \times 7 \times 2=(5 \times 2) \times 7$
- Distributive Property: The Distributive Property is easy to remember, if you recall that "multiplication distributes over addition." Example: $43 \times 6=(40 \times 6)+(3 \times 6)$
- \approx Symbol for meaning 'about'
- When multiplying whole numbers by multiples of 10 you cannot always count zeros in the factors and end up with the correct product.

$5,000 \times 60 \neq 3,000$	$5,0000 \times 60$
(3 zeros) (1 zero) (4 zeros)	$=5 \times 1,000 \times 6 \times 10$
	$=(5 \times 6) \times(1,000 \times 10)$
	$=30 \times 10,000=300,000$

Homework Help and Flipped Learning:

Looking for assistance for to help complete nightly homework? Check out the following website to get digital copies of homework, as well as detailed explanations in video format: http://www.oakdale.k12.ca.us/cms/page_view?

Focus Area: Topic A

Module 2: Multi-Digit Whole Number and Decimal Fraction Operations

Application Problems and Answers

Find the product. Show your thinking.

$$
\begin{array}{ll}
6 \times 70 & 80 \times 50 \\
=6 \times 7 \times 10 & =(8 \times 10) \times(5 \times 10) \\
=42 \times 10 & =(8 \times 5) \times(10 \times 10) \\
=420 & =40 \times 100 \\
& =4,000
\end{array}
$$

Round the factors to estimate the products.

$$
\begin{array}{rlrl}
867 \times 46 & \approx 900 \times 50 & 7,231 \times 25 & \approx 7,000 \times 30 \\
& =45,000 & & =210,000
\end{array}
$$

Example Problems and Answers

Problem: Laura wants to buy a new car. If the car payment is $\$ 367$ for five years, about how much will the car cost after the five years?
$\$ 367$ is about $\$ 400 \quad \& 12$ months in a year

$$
\$ 400 \times 12
$$

$=(4 \times 100) \times 12$
$=(4 \times 12) \times 100$
$=48 \times 100$
$=4,800$

For 5 years -- \$4,800 $\times 5$
$=(48 \times 100) \times 5$
$=48 \times 5 \times 100$
$=(40 \times 5)+(8 \times 5) \times 100$
$=(200+40) \times 100$
$=240 \times 100$
$=24,000$

Answer: The car will cost her about $\$ 24,000$.

Problem: Tickets to a baseball game are $\$ 23$ for an adult and $\$ 12$ for a student. If 37 adult ticket and 325 student tickets were bought, about how much money would it cost of everyone to attend the baseball game?
$\begin{array}{ll}\$ 23 \times 37 \text { adults } \approx \$ 20 \times 40 & =\$ 800 \\ \$ 12 \times 325 \text { children } \approx \$ 10 \times 300 & =\frac{+\$ 3,000}{\$ 3,800}\end{array}$
OR
$\$ 23 \times 37$ adults $\approx \$ 20 \times 40$

$$
\begin{aligned}
\$ 12 \times 325 \text { children } & \approx \$ 12 \times 390 \\
& =12 \times(3 \times 100) \\
& =(12 \times 3) \times 100 \\
& =36 \times 100 \\
& =3,600
\end{aligned}
$$

\$ 800

$$
\begin{array}{r}
+\$ 3,600 \\
\hline \$ 4,200
\end{array}
$$

Answer: It will cost about $\$ 3,800$ for everyone to attend the game. Or it will cost $\$ 4,200$ for everyone to attend.

