

Grade 5 | Module 2 |Topic C | Decimal Multi-Digit Multiplication

Welcome

This document is created to give parents and students a better understanding of the math concepts found in the Eureka Math (© 2013 Common Core, Inc.) that is also posted in the Engage New York material taught in the classroom. Grade 5 Module 2 of Eureka Math (Engage New York) Multi-Digit Whole Number and Decimal Fraction Operations. This newsletter will addresses decimal multi-digit multiplication.

Words to Know

- Product
- Estimate
- Decimal Fraction
- Factor
- Standard Algorithm

Online Practice

Looking for assistance for to help complete nightly homework? Check out the following website to get digital copies of homework, as well as detailed explanations in video format: http://www.oakdale.k12.ca.us/ cms/page view? d=x\&piid=\&vpid=140178482935 0. Visit www.zearn.com for extra practice as well!

Important Information

Objectives of Topic C

- Multiply decimal fractions with tenths by multi-digit whole numbers using place value understanding to record partial products.
- Multiply decimal fractions by multi-digit whole numbers through conversion to a whole number problem and reasoning about the placement of the decimal.
- Reason about the product of a whole number and a decimal with hundredths using place value understanding and estimation.

Things to Remember

- A decimal fraction uses a point to separate the whole number part from the fractional part of a number. Example: in the number 36.9 the point separates the 36 (the whole number part) from the 9 (the fractional part, which means 9 tenths). So 36.9 is 36 and nine tenths.
- When multiplying by a decimal fraction, convert the decimal fraction to a whole number by multiplying it by the power of 10 (10 or 100) depending on the number of places after the decimal point. The problem now resembles a whole number multiplication problem. Once you finish multiplying, you need to divide the answer by the power of 10 you multiplied by.
- If the decimal faction has one place after the decimal, you multiply by 10 . The digits will shift one place to the left. The result is a number that is 10 x greater than the original number. If the decimal has two places after the decimal, you multiply by 100. The digits will shift two places to the left. The result is a number that is 100 x greater than the original number.
- When a number is divided by 10 , the digits shift one place to the right. The result is a number $1 / 10$ as large as the original number. When a number is divided by 100 , the digits shift two places to the right. The result is a number $1 / 100$ as large as the original number.

Example Problems

Problem 1: Solve using standard algorithm.
54×3.5

Problem 2: Round the factors to estimate the products. (Symbol \approx means about).
Solve.

	7.5×52		17.6×22
$\approx 8 \times 50$	$\approx 18 \times 20$		$\approx 105 \times 3.3$
$=400$	$=360$		$=300$

$=400$
$=360$
$=300$

Problem 3: Estimate the product. Solve using an area model and the standard algorithm.

Solve 4.7×24 Estimation: $4.7 \times 24 \approx 5 \times 20$

Standard Algorithm

When we compare our answer (112.8) to our estimate (100), we can conclude that our answer i s reasonable.

Application Problems and Answers

Problem: Pat rides his bike a total of 6.83 miles to and from school every day. How many miles does

A. Courtney buys 79 protractors at $\$ 1.09$ and 32 composition notebooks at $\$ 2.19$ each. About how much money did she spend?
$\$ 1.09$ / protractor $\times 79$ protractors $\approx \$ 1 \times 80=\$ 80$
$\$ 2.19 /$ notebook $\times 32$ notebooks $\approx \$ 2 \times 30=\$ 60$

$$
\$ 80+\$ 60=\$ 140
$$

Courtney spent about $\$ 140$ on protractors and notebooks.
B. How much money did she actually spend?

$\$ 86.11$ cost of protractors
$+\$ 70.08$ cost of notebooks
$\$ 156.19$ total cost of supplies

Courtney actually spent \$156.19.

Application Problems and Answers (cont.)

Problem: A kitchen measures 32 feet by 17 feet. If tile costs $\$ 7.98$ per square foot, what is the total cost of putting tile in the kitchen?

$\$ 7.98(\times 100)$	312
$\times \quad 544$	
	344 3192 31920
	399000 434112 $434112 \div 100=\$ 4,341.12$

The total cost of putting tile in the kitchen is \$4,341.12.

Note: Area refers to the number if square units needed to cover the inside of a shape. To determine the area of this rectangle you multiply the length times the width. The formula for area is

$$
\text { Area }=\text { length } x \text { width. }
$$

Flipped Learning

Flipped learning is a great way to review topics that your student is learning in the classroom. The following are links to videos that give detailed explanations for each lesson in this topic.

Grade 5	$\begin{aligned} & \text { runges } \\ & \text { matres } \end{aligned}$
Module 2	engage ${ }^{\text {ny }}$
Lesson 10	> 10:09

Lesson 11: https:// www.youtube.com/watch? $\mathrm{v}=8 \mathrm{D} 8 \mathrm{MUUz70BA}$

Lesson 12: https:// www.youtube.com/watch? $\mathrm{v}=3 \mathrm{M} 5 \mathrm{nHME}$ _nzg

Grade 5	$\begin{aligned} & \text { tunges } \\ & \text { mates } \end{aligned}$
Module 2	engage ${ }^{\text {ny }}$
Lesson 10	-10:09

